Вычитание столбиком

Содержание:

Осваиваем операцию разделения (деления) на части в игровой форме

На этом этапе необходимо сформировать у ребёнка понимание того, что деление – это разделение чего-либо на равные части. Самый просто способ научить ребёнка этому – предложить ему разделить некоторое количество предметов между ним его друзьями или членами семьи.

Допустим, возьмите 8 одинаковых кубиков и предложите ребёнку разделить на две равные части – для него и другого человека. Варьируйте и усложняйте задание, предложите ребёнку разделить 8 кубиков не на двоих, а на четырёх человек. Проанализируйте вместе с ним результат. Меняйте составляющие, пробуйте с другим количеством предметов и людей, на которые нужно разделить эти предметы.

Важно:
Следите, чтобы вначале ребёнок оперировал с чётным количеством предметов, для того, чтобы результатом деления было одинаковое количество частей. Это окажется полезным на следующем этапе, когда ребёнку будет нужно понять, что деление – это операция обратная умножению

Вычитание столбиком подробное описание

Располагаем наши два числа, которые должны вычесть столбцом, по правилам, правая цифра под правой цифрой:

Смотрим первый столбец справа — 5 минус 4 — стандартная операция вычитания из большего числа меньшее, равно 1.

Второй столбец — 4 минус 9. 4 меньше 9, поэтому, забираем десяток из соседнего левого столбца(3) там остается 2.

Оставляем зарубку ‘ над числом 3, чтобы не забыть, что мы взяли оттуда единицу!

К десяти прибавляем 4 = 14, теперь мы можем отнять от 14 цифру 9 = 5 — сносим под черту.

Переходим к третьему столбцу справа. Это 3, но мы поставили там зарубку, что мы отсюда забрали единицу, значит здесь у нас осталась только двойка, 2 -1 = 1, сносим единицу под черту.

И последний столбец, под цифрой 8 ничего нет, и мы у восьмерки ничего не занимали, поэтому сносим её под черту без изменений.

Как вычитать десятичные дроби в столбик

При записи десятичных дробей нижние и верхние разряды чисел должны соотвествовать друг другу: целые под целыми, десятые под десятыми, сотые под сотыми, тысячные под тысячными

Действия с десятичными дробями производятся так же, как и с натуральными

Основные правила, которые важно знать при решении примеров на вычитание в столбик:

  1. Сначала следует уравнять количество знаков после запятой. Это делается путём добавления нулей. Например, необходимо вычесть из дроби 5,5 число 2,03. Как видно из примера, количество знаков после запятой разное. Чтобы сделать их одинаковым, в дробь 5,5 (пять целых пять десятых) в конце добавляем ноль и получаем 5,50 (пять целых пятьдесят сотых). Это правило следует из правил вычитания простых дробей. Как известно, дроби с разными знаменателями нельзя складывать или вычитать. Прежде их необходимо привести в общему знаменателю. В приведённом примере десятичные дроби можно записать в виде 5 5/10 и 2 3/100. Из целых чисел нужно вычитать целые, из дробных — дробные. В примере знаменатели у дробей разные, наименьший общий знаменатель равен 100. Следовательно, числитель и знаменатель дроби 5/10 следует умножить на 10, в итоге получим 50/100, что в переводе в десятичную дробь будет выглядеть как 5,50.
  2. Числа записать таким образом, чтобы запятая нижнего находилась в том же месте, что и у верхнего. Проще всего записывать числа, начиная с запятой. Поставить две запятые сверху и снизу, а затем уже расписывать знаки по обе стороны. Это правило, кстати, действует на основании того же правила вычитания простых дробей — из целого вычитаются целые, а из дробных — дробные. Запятая в результате должна располагаться точно под двумя верхними.
  3. Выполнить действие, не обращая внимания на запятую. Вычитают десятичные дроби справа налево, то есть начиная с самой правой цифры после запятой.
  4. Поставить в ответе запятую под запятой. Так мы сможем правильно отразить результат вычисления.

Вычитать нужно по цифрам разрядов: целые из целых, сотые из сотых и так далее

Калькулятор вычитания столбиком

Данный калькулятор поможет вам выполнить вычитание чисел столбиком. Просто введите уменьшаемое и вычитаемое и нажмите кнопку Вычислить.

В школе эти действия изучаются от простого к сложному. Поэтому непременно полагается хорошо усвоить алгоритм выполнения названных операций на простых примерах. Чтобы потом не возникло трудностей с делением десятичных дробей в столбик. Ведь это самый сложный вариант подобных заданий.

Этот предмет требует последовательного изучения. Пробелы в знаниях здесь недопустимы. Такой принцип должен усвоить каждый ученик уже в первом классе. Поэтому при пропуске нескольких уроков подряд материал придется освоить самостоятельно. Иначе позже возникнут проблемы не только с математикой, но и другими предметами, связанными с ней.

Второе обязательное условие успешного изучения математики — переходить к примерам на деление в столбик только после того, как освоены сложение, вычитание и умножение.

Ребенку будет трудно делить, если он не выучил таблицу умножения. Кстати, ее лучше учить по таблице Пифагора. Там нет ничего лишнего, да и усваивается умножение в таком случае проще.

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий при делении на двузначные числа. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.

  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370

Важно начинать запись с первого числа слева.
После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74

Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Способ 1 – Автосуммирование

Данное действие позволяет быстро узнать итог по столбцу без наличия навыков создания формул. Алгоритм действий:

  1. Курсор установить в месте, в котором надо вывести значение подсчетов.
  2. На вкладке «Главная» нажать значок Автосуммы или воспользоваться сочетанием клавиш Alt и =.

4.Вокруг чисел, вписанных в столбце выше ячейки с общей суммой, появляется мигающий пунктир. Он показывает, какие области данных будут суммироваться и нажать Enter.

Если требуется просуммировать сразу несколько столбцов или строк, то:

  1. Выделить ячейки, в которых будет отражена сумма по каждому из столбцов.
  2. Нажать символ Автосуммы.
  3. Enter. Итоги будут посчитаны сразу по двум столбцам.

Если требуется найти сумму вместе с несколькими дополнительными ячейками:

  1. Выделить область для вывода итогов.
  2. Нажать на иконку Автосуммы.
  3. Диапазон автоматически определится в составе всех вышерасположенных ячеек.
  4. Зажать Ctrl и выделить дополнительные области и нажать Enter.

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными (многозначными) числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Калькулятор вычитания столбиком

Данный калькулятор поможет вам выполнить вычитание чисел столбиком. Просто введите уменьшаемое и вычитаемое и нажмите кнопку Вычислить .

Существует удобный метод нахождения разности двух натуральных чисел – вычитание в столбик, или вычитание столбиком. Этот способ берет свое название от метода записи уменьшаемого и разности друг под другом. Так можно провести и основные, и промежуточные вычисления в соответствии с нужными разрядами чисел.

Этим методом удобно пользоваться, поскольку это очень просто, быстро и наглядно. Все сложные на первый взгляд подсчеты можно свести к сложению и вычитанию простых чисел.

Ниже мы рассмотрим, как именно пользоваться этим методом. Наши рассуждения будут подкреплены примерами для большей наглядности.

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

Понравился наш контент? Подпишитесь на канал в .

Признаки делимости величин

Перед использованием признаков делимости чисел нужно понимать, что величины классифицируются на простые и составные. Первые делятся только на 1 и эквивалентное себе значение. Вторые могут содержать нескольких множителей. В последнем случае и необходимо использовать правила деления.

Следует отметить, что для удобства специалисты рекомендуют составить письменную карточку с таблицей простых величин или распечатать ее при помощи принтера, предварительно загрузив из интернета. Правила делимости многозначного на однозначное число имеют следующий вид (делители соответствуют порядковому номеру списка):

Любое значение, т. е. 34/1=34.
Величина, заканчивающаяся четной цифрой.
Сумма цифр разрядной сетки должна делиться на тройку.
Сумма двух последних элементов делится на четверку.
Величина заканчивается на ноль или пятерку.
Сумма цифр делится на тройку, а также число является четным.
Число разбивается на разряды по три элемента (без последних), которые суммируются между собой. Она должна делиться на 7. Если величина имеет небольшое количество знаков (двузначная, трехзначная, четырехзначная или пятизначная), то нужно взять числа без последнего компонента разрядной сетки. Затем от них отнять удвоенное значение разряда единиц. Результат разности должен делиться на 7. Например, 259/7 -> 25−2*9=25−18=7 (делится).
Если выполняется условие для 2 и 4 одновременно.
Сумма компонентов разрядной сетки делится на девятку.
Величина заканчивается 0.

Следует отметить, что реализация правила деления величины 45134412 на семерку выполняется следующим образом: | 45 | 134 | 412 =9+8+7=24 — не делится на 7. Применить способ для малого количества разрядов не получится, поскольку на вычисления будет затрачено много времени.

Методика обучения делению в столбик

Чтобы приступить к этому арифметическому действию, нужно познакомить ребенка с названием элементов при делении.

Делимое – число, что подвергается делению, делится на делитель, в результате получается частное.

Объясняют ему саму суть операции деления столбиком. Это такое действие в математике, которое применяют для разделения чисел за счет дробления самого процесса деления на более простые шаги.

Деление в столбик на конкретном примере

Метод деления, основанный на конкретном примере, очень распространен и используется школьниками в дальнейшей учебе. Ребенку предлагается разделить число 945 на 5 в столбик.

Шаг 1. На этом этапе нужно попросить ребенка показать компоненты деления. Если он правильно усвоил выше изложенный материал, то без особых усилий определит: 945 – это делимое, 5 – делитель, результат деления – частное. Собственно, это то, что и необходимо найти.

Шаг 2. Сначала ребенка просят записать рядом 945 и 5, а потом делят их «уголком».

Шаг 3. Следующий этап, просят ребенка рассмотреть делимое и, продвигаясь вправо, предлагают определить самое меньшее число, что больше делителя. Ученик определяет числа: 9, 94 и 945. Самым меньшим из них является 9. Потом спрашивают, сколько раз 5 помещается в числе 9? Ребенок дает ответ, что один раз. Значит, пишут 1 под чертой – первую цифру искомого частного.

Вот и столбик скоро получится.

Шаг 4. На следующем этапе предлагают ребенку умножить 1 на 5 и получают 5. Просят записать результат, который получили, под первой цифрой делимого, и из 9 вычитают 5. Спрашивают ребенка о результате и получают 4.

Здесь важно объяснить ему, что результат вычитания всегда будет меньше делителя. А когда наоборот, значит, неправильно удалось определить, сколько раз 5 содержится в 9

Так как результат получился меньше делителя, его увеличивают с помощью следующей цифры делимого. Ребенок определяет 4 и пишет к четверке.

Шаг 5. Дальше задают ему знакомый вопрос о том, сколько раз 5 помещается в 44? Ученик отвечает, что восемь раз. Тогда предлагают записать восьмерку к единице под чертой. Объясняют ребенку, что это будет следующая цифра искомого частного. Просят умножить 5 на 8. Получается 40, и записывают эту цифру под 44.

Шаг 6. На следующем этапе вся операция повторяется. Ученик вычитает 40 из 44, и получает 4 (4 меньше 5, значит, ребенок все делает правильно). Теперь предлагают использовать последнюю цифру делимого — 5, просят приписать ее вниз к четверке и получается число 45.

Снова задают тот же вопрос. Сколько раз 5 помещается в 45? Ребенок отвечает, что девять раз.

Шаг 7. Просят его записать девятку под чертой. Предлагают умножить 5 на 9. Ребенок говорит, что получает в результате 45 и записывает в столбик под 45. Дальше проводит вычитание 45 из 45, и получает 0. Ему объясняют, что это был пример деления числа без остатка.

Когда ребенок неплохо умеет пользоваться таблицей умножения, деление в столбик для него простой задачей

Очень важно с помощью постоянных примеров и упражнений закрепить полученный навык

Какие методики обучения счёту использовать

Сегодня довольно легко узнать, как научить ребёнка считать, есть проверенные методики, которые позволяют сделать это в игровой форме, интересной для ребёнка:

  • Счёт на пальцах. Эта методика помогает понять, как научить ребёнка считать до 10. Запомнить сразу десять цифр малышу будет сложно, поэтому можно начать с пяти и ориентироваться на пальцы одной руки. Познакомьте ребёнка с названиями первых пяти цифр, далее подключите вторую руку. Можно использовать игры с пальчиками, когда один исчезает или два-три пальчика встречаются вместе.
  • Использование обучающих карточек и палочек. Можно выкладывать их по одной на стол и называть цифры, потом сдвинуть одну часть палочек вправо, а другую влево и спросить, сколько палочек в каждой части. Лучше запомнить цифры ребёнку помогут карточки с изображёнными на них предметами, например, шесть шляп, два котёнка, три банана.
  • Счёт с помощью предметов. Этот метод хорош для того, чтобы понять, как научить ребёнка считать до 20. После того как ребёнок научится считать до десяти, объясните ему, что во втором десятке числа состоят из двух цифр, первой из цифр будут десятки, а второй — единицы. Для этого можно использовать две коробки — в одну положить десять кубиков, а в другую один, такой способ наглядно продемонстрирует разницу между десятками и единицами. Также предметы можно использовать, если вы хотите понять, как научить ребёнка считать десятками. Предметы или полоски необходимо выкладывать десятками друг за другом и объяснить ребёнку, что десятками считают так же, как единицами, но используют «дцать».
  • Игры с цифрами. Поиграйте с ребёнком в «магазин», выбрав, кто из вас будет продавцом, а кто — покупателем, назначьте валюту. Продавая или покупая конфеты и игрушки, ребёнок легко запомнит цифры до десяти и даже до двадцати.
  • Методика Монтессори. Этот метод схож с игрой в магазин, так как Мария Монтессори считала, что одним из лучших способов обучения счёту являются операции с деньгами или муляжами денег. Можно дать ребёнку разные монеты, например, рубль, два, пять и попросить его посчитать сумму или разменять.

Вычитание

Вычитание это процесс переноса числа по числовой прямой влево, то есть против движения числовой прямой. При этом результаты вычитания могут быть различны: может получиться ноль, положительное или отрицательное число.

Несмотря на то, что результаты вычисления могут быть различны, результат всегда остается в категории действительных чисел или комплексных чисел, в зависимости от того, какие числа участвовали в вычислении. При вычитании рациональных чисел никогда не получится иррациональное число, а при вычитании действительных – комплексное. Нужно внимательно следить за этим.

Вычитать столбиком можно только рациональные числа с любым знаком. Столбиком не получится подсчитать вычитание обычных дробей, но эта операция всегда представляется в виде вычитания целых чисел в числителе, поэтому таким способом можно вычислять и подобные выражения.

Как посчитать сумму в столбце за исключением заголовка или исключая несколько первых строк

Обычно ссылки на столбцы используются в формуле СУММ для того, чтобы посчитать сумму в столбце, игнорируя заголовок, как показано на приведенном выше изображении. Но в некоторых случаях заголовок столбца может содержать какое-то числовое значение. Или, например, вы хотите исключить первые несколько строк с числами, которые не имеют отношения к данным.

К сожалению, Microsoft Excel не принимает смешанную формулу СУММ с явной нижней границей, но без верхней границы, например, такой как =СУММ(B2: B). Если вам необходимо посчитать сумму в столбце, исключив первые несколько строк, вы можете использовать одно из следующих нескольких решений.

  1. Посчитайте сумму столбца, а затем вычтите ячейки, которые вы не хотите включать в общую сумму (ячейки B1-B3 в данном примере):

Как вычитать столбиком

Вычитание многозначных чисел обычно выполняют столбиком, записывая числа друг под другом (уменьшаемое сверху, вычитаемое снизу) так, чтобы цифры одинаковых разрядов стояли друг под другом (единицы под единицами, десятки под десятками и т. д.). Слева между числами ставится знак действия. Под вычитаемым проводят черту. Вычисление начинают с разряда единиц: из единиц вычитают единицы, затем из десятков — десятки и т. д. Результат вычитания записывают под чертой:

Рассмотрим пример, когда в каком-либо разряде цифра уменьшаемого меньше цифры вычитаемого:

От 2 мы не можем отнять 9, что нам делать в этом случае? В разряде единиц у нас нехватка, но в разряде десятков у уменьшаемого аж 7 десятков, поэтому мы можем один из этих десятков перекинуть в разряд единиц:

В разряде единиц у нас было 2, мы перекинули десяток, стало 12 единиц. Теперь мы легко можем от 12 отнять 9. Записываем под чертой в разряде единиц 3. В разряде десятков у нас было 7 единиц, одну из них мы перекинули в простые единицы, осталось 6 десятков. Записываем под чертой в разряде десятков 6. В результате мы получили число 63:

Вычитание столбиком обычно не записывают так подробно, вместо этого, над цифрой разряда, у которого будет занята единица, ставят точку, чтобы не запоминать, у какого разряда надо будет дополнительно вычесть единицу:

При этом говорят так: из 2 вычесть 9 нельзя, занимаем единицу, из 12 вычитаем 9 — получим 3, пишем 3, в разряде десятков у нас было 7 единиц, мы одну перекинули, осталось 6, пишем 6 .

Теперь рассмотрим вычитание столбиком из чисел, содержащих нули:

Начинаем вычитать. От 7 отнимаем 3, пишем 4. От нуля мы не можем отнять 5, поэтому мы вынуждены занять единицу в старшем разряде, но в старшем разряде у нас тоже 0, поэтому и для этого разряда мы вынуждены занять в более старшем разряде. Занимаем единицу из разряда тысяч, получаем 10 сотен:

Одну из единиц разряда сотен мы занимаем в младший разряд, получаем 10 десятков. Из 10 вычитаем 5, пишем 5:

В разряде сотен у нас осталось 9 единиц поэтому, от 9 отнимаем 6, пишем 3. В разряде тысяч у нас была единица, но мы её потратили на младшие разряды, поэтому здесь остаётся нуль (его записывать не надо). В результате мы получили число 354:

Такая подробная запись решения была приведена, чтобы было проще понять, как выполняется вычитание столбиком из чисел содержащих нули. Как уже упоминалось, на практике решение обычно записывается так:

А все упомянутые действия выполняются в уме. Чтобы было легче выполнять вычитание, запомните простое правило:

Если при вычитании столбиком над нулём стоит точка, нуль превращается в 9.

Как посчитать сумму в столбце с помощью функции СУММ

Чтобы посчитать сумму в столбце, вы можете использовать функцию Excel СУММ. Например, чтобы посчитать сумму в столбце B , например, в ячейках B2-B8, введите следующую формулу Excel СУММ:

Как посчитать сумму в столбце в Excel – Посчитать сумму в столбце

Существует второй способ, как в Excel посчитать сумму столбца автоматически. Для этого выберите последнюю пустую ячейку в столбце, в котором вы хотите посчитать сумму. На вкладке « ГЛАВНАЯ » в группе « Редактирование », нажмите « Автосумма » и клавишу « Enter ». После этого в ячейке будет автоматически введена формула «СУММ»:

Как посчитать сумму в столбце в Excel – В таблице посчитать сумму столбца с использованием Автосуммы

Делим столбиком – приведем пример

Перед началом занятия вспомните вместе с ребёнком, как называются цифры в процессе операции деления. Что является «делителем», «делимым», «частным»? Научите безошибочно и быстро определять эти категории. Это будет очень полезным во время обучения ребёнка делению простых чисел.

Объясняем наглядно

Давайте разделим 938 на 7. В данном примере 938 – это делимое, 7 – делитель. Результатом будет частное, его то и нужно вычислить.

Шаг 1
. Записываем числа, разделив их «уголком».

Шаг 2.
Покажите ученику числа делимого и предложите ему, выбрать из них то наименьшее число, которое окажется больше делителя. Из трёх цифр 9, 3 и 8, этим числом будет 9. Предложите ребёнку проанализировать, сколько раз число 7 может содержаться в числе 9? Правильно, только один раз. Поэтому первым записанными нами результатом будет 1.

Шаг 3.
Переходим к оформлению деления столбиком:

Умножаем делитель 7х1 и получаем 7. Полученный результат записываем под первым числом нашего делимого 938 и вычитаем, как обычно, в столбик. То есть из 9 мы вычитаем 7 и получаем 2.

Записываем результат.

Шаг 4.
Число, которое мы видим, меньше делителя, поэтому необходимо его надо увеличить. Для этого объединим его со следующим неиспользованным числом нашего делимого – это будет 3. Приписываем 3 к полученному числу 2.

Шаг 5.
Далее действуем по уже известному алгоритму. Анализируем, сколько раз наш делитель 7 содержится в полученном числе 23? Правильно, три раза. Фиксируем число 3 в частном. А результат произведения – 21 (7*3) записываем внизу под числом 23 в столбик.

Шаг.6
Теперь осталось найти последнее число нашего частного. Используя уже знакомый алгоритм, продолжаем делать вычисления в столбике. Путём вычитания в столбике (23-21) получаем разницу. Она равняется 2.

Из делимого у нас осталась неиспользованным одно число – 8. Объединяем его с полученным в результате вычитания числом 2, получаем – 28.

Шаг.7
Анализируем, сколько раз наш делитель 7 содержится в полученном числе? Правильно, 4 раза. Записываем полученную цифру в результат. Итак, мы полученное в результате деления столбиком частное= 134.

Что нужно знать, что бы научиться делить

Прежде, чем приступить к делению, нужно убедиться в том, что ребенок усвоил азы математики – сложение, вычитание.

Надо объяснить ему основы умножения и проверить знание таблицы умножения. Необходимо убедиться, как он выучил разряды чисел.

Без этих основ вряд ли получится проводить арифметические операции с числами

Математика не терпит пробелов в знаниях, поэтому важно вложить этот принцип в голову ребенка с раннего возраста. Даже если какая-то часть материала была пропущена по причине болезни или иного отсутствия на уроке, материал должен быть выучен

Пробелы в знаниях повлекут за собой трудности в решении задач, примеров, а в старших классах и проблемы в изучении других дисциплин.

Вычитание в столбик однозначных объяснение для ребенка.

В качестве примера вычтем из 9 чилло 5. Если ребенок не умеет считать вообще, то можно показать на пальцах(ну по крайней мере нас учили так!). Не обязательно рассказывать и показывать на пальцах. Но почему это будет легче объяснить на пальцах, потому, что будет возникать визуальный ряд! Я не говорю, что такая методика правильная или не правильная — она просто существует и я её вам рассказываю! Это уже ваше дело какую методику выбирать!

Т.е. показываем ребенку 9 пальцев:

Убираем одну руку, которая обозначает 5 пальцев.

Спрашиваем у ребенка, сколько остается.

Проделываем так несколько раз, на разных числах.

Суммирование

Суммирование – важная операция, необходимая для подсчета данных в различных сферах. Если с нахождением суммы диапазона не возникает вопросов, как посчитать сумму ячеек в Excel, если даны одно или несколько условий.

Сумма с одним условием

Дана задача, при которой нужно подсчитать сумму ячеек при выполнении конкретного условия. Здесь пользователь применяет функцию, аналогичную фильтру значений. Проверка выполняется в:

Текстовое значение

Для решения задачи с одним условием в виде текстового значения юзер:

  • создает таблицу;
  • выбирает ячейку, где будет подсчитана сумма, и устанавливает курсор в строку формул;
  • вводит команду: =суммесли (условия выполнения).
  • последовательно указывает диапазон значений, условие отбора, диапазон суммирования.
  • для получения результата нажимает «Enter». В выбранной ячейке указывает сумму тех значений, которые удовлетворяют поставленному условию.

Примечание: Первый параметр – диапазон значений, среди которых будет проводиться отбор.

Второй параметр – критерий, указывающий, что нужно искать.

Третий параметр – диапазон суммирования, из которого будут выбираться значения, удовлетворяющие второму параметру, и складываться.

Критерий отбора указывается в кавычках.

Между параметрами функции обязательно должен быть разделитель «;» (точка с запятой). В противном случае приложение выдаст ошибку о неверно написанной функции.

После введения формулы нужно обязательно проверить правильность расстановки скобок.

Численное значение

Для получения суммы с одним условием в численном формате пользователь:

  • формирует таблицу;
  • выбирает ячейку, где будет отображаться итог решения задачи;
  • переходит в строку формул;
  • вписывает функцию: =суммесли (условия выполнения);
  • действует согласно предыдущему алгоритму, указывая условия отбора и диапазоны значений;
  • для получения результата нажимает «Enter». В выбранной ячейке указывается сумма тех значений, которые удовлетворяют поставленному условию.

Сумма с несколькими условиями

Иногда юзеру нужно решить задачу, где указаны 2 и более условий, и нужно найти сумму значений, удовлетворяющих заданным критериям. Для этого используется функция «=СУММЕСЛИМН»

Поэтому важно знать, как в Экселе сделать сумму с несколькими условиями. Для этого пользователь:

  • формирует таблицу по заданному образцу;
  • выбирает ячейку, где будет отображаться итог решения задачи;
  • переходит в строку формул;
  • вписывает функцию: =суммеслимн (условия выполнения).
  • последовательно указывает диапазон сложения, диапазон условия1, условие1 и т.д.;
  • для получения результата нажимает «Enter». В выбранной ячейке указывает сумма тех значений, которые удовлетворяют поставленному условию.

Примечание: Первый параметр – диапазон сложения, из которого будут выбираться значения, удовлетворяющие условиям, и складываться.

Второй параметр – диапазон условия 1, указывающий столбец, в котором проходит фильтрация по первому условию.

Третий параметр – условие1, которое указывается в кавычках и задает фильтрацию.

Четвертый и последующий параметры аналогичны второму и третьему, т.е. диапазон условия2, условие2; диапазон условия3, условие3 и т.д.

Условий отбора может множество.

Между параметрами функции обязательно должен быть разделитель «;» (точка с запятой). В противном случае приложение выдаст ошибку о неверно написанной функции.

После введения формулы нужно обязательно проверить правильность расстановки скобок.

Произведение двух столбцов

Возникают ситуации, когда нужно знать, как посчитать сумму в Excel через произведение двух столбцов. Для этого пользователь:

  • вводит значения в 2 столбца;
  • выбирает ячейку, где отображается результат;
  • устанавливает курсор в строку формул и вводит текст:=сумм (диапазон ячеек одного столбца ) *сумм(диапазон ячеек другого столбца);
  • для получения результата нажимает «Enter».

Примечание: при ручном написании функций важно проверить правильность расстановки скобок. В противном случае приложение выдаст сообщение об ошибке и предложит исправить недочет

Для получения произведения двух столбцов пользователь:

  • находит сумму чисел в первом и втором столбце;
  • в произвольной ячейке отмечает произведение двух сумм путем написания формулы в строке формулы или непосредственно в ячейке;
  • нажимает «Enter».
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector