Порядок действий в математике 4 класс

Как отличить?

Предложение сложное и простое имеет тесную связь с количеством грамматических основ.

Чтобы понять, когда предложение простое, а когда сложное, нужно посчитать количество грамматических основ, что значит: те, кто говорит на русском языке, должны уметь правильно определять грамматические основы предложений. Без умения находить грамматическую основу предложения невозможно определить, простым или сложным является то или иное предложение.

Необходимо отличать самостоятельную грамматическую основу и однородные подлежащие или сказуемые. Также нужно понимать, что грамматической основой может быть и только подлежащее или только сказуемое.

Сравним простые предложения и сложные предложения.

Примеры простых предложения:

  • Мы катались на аттракционах (1 грамматическая основа: мы катались).
  • Я уехал к бабушке на каникулы (1 грамматическая основа: я уехал).
  • Он открыл дверь и увидел меня (1 грамматическая основа с однородными сказуемыми: он открыл и увидел).

Примеры сложных предложений:

  • Наступили холода, ребята надели теплые свитера (2 грамматические основы: холода наступили; ребята надели).
  • Я вышел из школы, но мама еще не подошла (2 грамматические основы: я вышел; мама не подошла).
  • Мой друг пришел, когда закончился дождь (2 грамматические основы: друг пришел; дождь закончился).

Что мы узнали?

Простое предложение – предложение с одной грамматической основой Сложное предложение – предложение с двумя и более грамматическими основами. В состав сложного предложения входят простые предложения, которые связаны по смыслу и интонационно. Между частями сложных предложений могут стоять союзы. Разграничение простого предложения от сложного предложения происходит по количеству грамматических основ.

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Многозначные числа.

Существуют в математике огромное количество натуральных чисел. Они все разные. Например, 2, 67, 354, 1009. Рассмотрим подробно эти числа.Натуральное число 2 состоит из одной цифры, поэтому такое число называют, однозначным числом. Еще пример однозначных чисел: 3, 5, 8.Натуральное число 67 состоит из двух цифр, поэтому такое число называют, двузначным числом. Пример двузначных чисел: 12, 35, 99.Трехзначные числа состоят из трех цифр, например: 354, 444, 780.Четырехзначные числа состоят из четырёх цифр, например: 1009, 2600, 5732.

Двузначные, трехзначные, четырехзначные, пятизначные, шестизначные и т.д. числа, называются, многозначными числами.

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

    Выполняем то, что можно сделать, уравнение станет немного короче.

  2. Х в одну сторону, цифры в другую.

    Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

  3. При переносе х или цифры через знак равенства, их знак меняется на противоположный.

     Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  4. Если в конце уравнение начинается с числа, то просто меняем местами.
  5. Всегда делаем проверку!

При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

Данное подробное описание, как объяснить уравнения с х школьнику для:

  • родителей;
  • школьников;
  • репетиторов;
  • бабушек и дедушек;
  • учителей;

Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

Математика 4 класс. Задачи, решения, ответы.

Задачи по математике 4 класс.

Задание 1:

В магазин привезли 32 коробки конфет, по 9 кг в каждой, и 36 коробок вафель, по 8 кг в каждой. Каких сладостей привезли больше и на сколько килограммов больше?

Решение:1) 32 * 9 = 288 2) 36 * 8 = 288
Ответ: В магазин привезли одинаковое количество конфет и вафель.

Задание 2:

С одного поля собрали 1 т 800 кг картофеля, а с другого — в 3 раза меньше. Весь картофель разложили в мешки, по 40 кг в каждый. Сколько мешков с картофелем получили?

Решение:1)1800 : 3 = 600 (со второго поля) 2) 1800 + 600 = 2400 (всего собрали картофеля) 3) 2400 : 40 = 60(мешков с картофелем получили)
Ответ: 60 мешков.

Задание 3:

  • 1) Вычисли периметр и площадь прямоугольника со сторонами 2 см и 4 см.
  • 2) Найди длину стороны квадрата, периметр которого равен периметру прямоугольника в задании 1).

Решение:1) 2 + 2 + 4 + 4 = 12 см (периметр прямоугольника), 2 * 4 = 8 квадратных сантиметра
2) 12 : 4 = 3 (длина стороны квадрата)

Задание 4:

Один мастер изготовил 6 ниток бус, по 38 бусинок в каждой, а другой — 7 ниток бус, по 36 бусинок в каждой. Какой мастер использовал больше бусинок и на сколько?

Решение:1) 6 * 38 = 228 (бусинки использовал 1 мастер) 2) 7 * 36 = 252 (бусинки использовал 2 мастер) 3) 252 — 228 = 24
Ответ: Второй мастер использовал на 24 бусинки больше чем первый.

Задание 5:

В первый день в санаторий приехало 900 человек, а во второй — в 9 раз меньше, чем в первый. Всех отдыхающих поселили в комнаты, по 2 человека в каждой. Сколько комнат заняли все отдыхающие?

Решение:1) 900 : 9 = 100 (отдыхающих приехало во второй день) 2) 900 + 100 = 1000 (отдыхающих приехало за 2 дня) 3) 1000 : 2 = 500 (комнат заняли все отдыхающие) Ответ: 500 комнат.

Задание 6:

  • 1) Вычисли периметр и площадь прямоугольника со сторонами 7 см и 3 см.
  • 2) Найди длину стороны квадрата, периметр которого равен периметру прямоугольника в № 1).

Решение:1) 7 + 7 + 3 + 3 = 20 см (периметр), 7 * 3 = 21 см квадратных (площадь)
2) 20 : 4 = 5(длина стороны квадрата)
Задачи повышенной сложности по математике 4 класс.

Задание 1:

Один токарь за смену изготовил 32 детали. Другой токарь, работая с той же производительностью, изготовил 24 детали. Сколько часов работал первый токарь, если известно, что второй токарь работал на 2 часа меньше, чем первый?

Решение:

Пусть первый токарь работал x часов. Тогда второй токарь работал (x — 2) часов. Первый токарь за час изготавливал (32/x) деталей, а второй токарь (24/(x — 2)). По условию задачи оба токаря работали с одинаковой производительностью. Это значит, что за 1 час они изготавливали одинаковое число деталей, поэтому мы можем записать и решить уравнение: 30/x = 24/(x — 2); 32*(x — 2) = 24 * x; 32x — 64 = 24x; 8x = 64; x = 8.Ответ: первый токарь работал 8 часов.

Задание 2:

Сложная задача по математике для 4 класса: Из двух городов по реке одновременно выплыли навстречу друг другу две моторные лодки. Скорость первой лодки 15км/ч, второй лодки 35км/ч. Первая лодка двигалась по течению реки. Скорость течения реки 5км/ч. Через сколько часов лодки встретились, если расстояние между городами 250км?

Решение:

Пусть до встречи лодок первая проплыла x км. Тогда вторая лодка проплыла (250 — x) км. Учитывая скорость течения реки, скорость первой лодки 15 + 5 = 20км/ч. Соответственно, скорость второй лодки 35 — 5 = 30км/ч. Очевидно, что время в пути до встречи одинаково, поэтому можно записать уравнение: x/20 = (250 — x)/30; x * 30 = 20 * (250 — x); 30x = 5000 — 20x; 50x = 5000; x = 100км.

Первая лодка до встречи со второй прошла 100км. Рассчитаем время: t = x/20 = 100/20 = 5ч.

Для проверки мы можем рассчитать время второй лодки: t = x/20 = (250 — x)/30 = 150/30 = 5ч. Ответ: лодки встретились через 5 часов.

Задания по математике 4 класс:

Тест 1       |       Тест 2       |       Тест 3       |       Тест 4       |       Тест 5

Задание 1:

Один токарь за смену изготовил 32 детали. Другой токарь, работая с той же производительностью, изготовил 24 детали. Сколько часов работал первый токарь, если известно, что второй токарь работал на 2 часа меньше, чем первый?

Решение:

Пусть первый токарь работал x часов. Тогда второй токарь работал (x — 2) часов. Первый токарь за час изготавливал (32/x) деталей, а второй токарь (24/(x — 2)). По условию задачи оба токаря работали с одинаковой производительностью. Это значит, что за 1 час они изготавливали одинаковое число деталей, поэтому мы можем записать и решить уравнение: 30/x = 24/(x — 2); 32*(x — 2) = 24 * x; 32x — 64 = 24x; 8x = 64; x = 8.Ответ: первый токарь работал 8 часов.

Из своей практики

Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что  на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

← Я-репетитор. Подработка в интернете и освоение профессииМасленица: дата празднования, история и традиции праздника. Рецепт блинов →

comments powered by HyperComments

Сумма разрядных слагаемых.

Любое натурально число имеющее различные разряды можно разложить на сумму разрядных слагаемых. Рассмотрим пример:
Число 4062 распишем на разряды.

4 тысяч 0 сотен 6 десятков 2 единиц или по-другому можно записать

4062=4 ⋅1000+0 ⋅100+6 ⋅10+2

Следующий пример:
26490=2 ⋅10000+6 ⋅1000+4 ⋅100+9 ⋅10+0

Вопросы по теме:

Назовите первые четыре класса в записи натуральных чисел?
Ответ: класс единиц, класс тысяч, класс миллионов, класс миллиардов.

Как читают многозначные числа?
Ответ: многозначные числа читают слева направо. Разбивают число по 3 цифры с конца на классы, называют все цифры, кроме нуля. Цифра 0 в записи  числа означают отсутствие разряда.

Какие цифры могут стоять в любом разряде числа, кроме высшего?
Ответ: 0, 1, 2, 3, 4. 5, 6, 7, 8, 9.

Какие цифры могут стоять в высшем разряде числа?
Ответ: 1, 2, 3, 4. 5, 6, 7, 8, 9.

Что такое сумма разрядных слагаемых?
Ответ: Это разложение натурального числа на разряды и суммирование их.

Сколько десятков в сотне?
Ответ: в сотне 10 десятков.(10+10+10+10+10+10+10+10+10+10=100)

Сколько сотен в тысячи?
Ответ: в тысячи 10 сотен. (100+100+100+100+100+100+100+100+100+100=1000)

Сколько десятков в тысячи?
Ответ: в тысячи 100 десятков.

Сколько тысяч в миллионе?
Ответ: в миллионе 1000 тысяч.

Примеры на задачи.

Пример №1:
Запишите и прочитайте число: а) пятизначное б) шестизначное.
Ответ: а) 35 100 (тридцать пять тысяч сто) б) 803 273 (восемьсот три тысячи двести семьдесят три)

Пример №2:
Сколько натуральных чисел: а) однозначных б) двузначных?
Ответ: а) однозначных натуральных чисел 10 (0, 1, 2, 3, 4. 5, 6, 7, 8, 9), б) двузначных натуральных чисел 90 (10, 11, 12, …,99)

Пример №3:
В записи числа 10398 назовите цифры разрядов единиц, десятков, сотен, тысяч, десятков тысяч, …
Ответ: 8 – разряд единиц, 9 – разряд десятков, 3 – разряд сотен, 0 – разряд тысяч, 1 – разряд десятков тысяч.

Пример №4:
Напишите наименьшее трехзначное число и наибольшее пятизначное число.
Ответ: 100 и 99999.

Пример №5:
Запишите число 56976 в виде суммы разрядных слагаемых:
Ответ: 56976=50000+6000+900+70+6=5⋅10000+6⋅1000+9⋅100+7⋅10+6

Правило встречается в следующих упражнениях:

2 класс

Страница 55. Вариант 2. № 2,
Моро, Волкова, Проверочные работы

Страница 12,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 19,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 23,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 52,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 62,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 80,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 54,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 64,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 68,
Моро, Волкова, Рабочая тетрадь, часть 2

3 класс

Страница 100,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 104,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 109,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 73. Вариант 2. Проверочная работа 1,
Моро, Волкова, Проверочные работы

Страница 81. Вариант 2. Проверочная работа 1,
Моро, Волкова, Проверочные работы

Страница 33,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 85,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 86,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 90,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 16,
Моро, Волкова, Рабочая тетрадь, часть 2

4 класс

Страница 7,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 20,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 55,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 5,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 29,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 53,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 47,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 49,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

5 класс

Задание 22,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 461,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 481,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 548,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 163,
Мерзляк, Полонский, Якир, Учебник

Упражнение 365,
Мерзляк, Полонский, Якир, Учебник

Упражнение 387,
Мерзляк, Полонский, Якир, Учебник

Упражнение 515,
Мерзляк, Полонский, Якир, Учебник

Упражнение 554,
Мерзляк, Полонский, Якир, Учебник

Упражнение 6,
Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 18,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 73,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 85,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 92,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 373,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 378,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 400,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 411,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 413,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 425,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Порядок выполнения действий в выражениях с корнями, степенями, логарифмами и другими функциями

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции, то их значения вычисляются до выполнения остальных действий, при этом также учитываются правила из предыдущих пунктов, задающие порядок выполнения действий. Иными словами, перечисленные вещи, грубо говоря, можно считать заключенными в скобки, а мы знаем, что сначала выполняются действия в скобках.

Рассмотрим решения примеров.

Пример.

Выполните действия в выражении (3+1)·2+62:3−7.

Решение.

В этом выражении содержится степень 62, ее значение нужно вычислить до выполнения остальных действий. Итак, выполняем возведение в степень: 62=36. Подставляем это значение в исходное выражение, оно примет вид (3+1)·2+36:3−7.

Дальше все понятно: выполняем действия в скобках, после чего остается выражение без скобок, в котором по порядку слева направо сначала выполняем умножение и деление, а затем – сложение и вычитание. Имеем (3+1)·2+36:3−7=4·2+36:3−7=8+12−7=13.

Ответ:

(3+1)·2+62:3−7=13.

Другие, в том числе и более сложные примеры выполнения действий в выражениях с корнями, степенями и т.п., Вы можете посмотреть в статье вычисление значений выражений.

Список литературы.

Некоторые правила, которые необходимо соблюдать при решении примеров без скобок:

• Если в задании необходимо выполнить ряд действий, нужно сначала выполнить деление или умножение, затем сложение. Все действия выполняются по ходу письма. В противном случае, результат решения будет не верным.

• Если в примере требуется выполнить сложение и вычитание, выполняем по порядку, слева направо.

27-5+15=37 (при решении примера руководствуемся правилом. Сначала выполняем вычитание, затем – сложение).

• Научите ребёнка всегда планировать и нумеровать выполняемые действия.

• Ответы на каждое решённое действие записываются над примером. Так ребёнку гораздо легче будет ориентироваться в действиях.

Рассмотрим ещё один вариант, где необходимо распределить действия по порядку:

Как видим, при решении соблюдено правило, сначала ищем произведение, после — разность.

Это простые примеры, при решении которых, необходима внимательность. Многие дети впадают в ступор при виде задания, в котором присутствует не только умножение и деление, но и скобки. У школьника, не знающего порядок выполнения действий, возникают вопросы, которые мешают выполнить задание.

Как говорилось в правиле, сначала найдём произведение или частное, а потом всё остальное. Но тут же есть скобки! Как поступить в этом случае?

Решение примеров со скобками

Разберём конкретный пример:

  • При выполнении данного задания, сначала найдём значение выражения, заключённого в скобки.
  • Начать следует с умножения, далее – сложение.
  • После того, как выражение в скобках решено, приступаем к действиям вне их.
  • По правилам порядка действий, следующим шагом будет умножение.
  • Завершающим этапом станет вычитание.

Как видим на наглядном примере, все действия пронумерованы. Для закрепления темы предложите ребёнку решить самостоятельно несколько примеров:

Порядок, по которому следует вычислять значение выражения уже расставлен. Ребёнку останется только выполнить непосредственно решение.

Усложним задачу. Пусть ребёнок найдёт значение выражений самостоятельно.

7*3-5*4+(20-19) 14+2*3-(13-9) 17+2*5+(28-2) 5*3+15-(2-1*2) 24-3*2-(56-4*3) 14+12-3*(21-7)

Приучите ребёнка решать все задания в черновом варианте. В таком случае, у школьника будет возможность исправить не верное решение или помарки. В рабочей тетради исправления не допустимы. Выполняя самостоятельно задания, дети видят свои ошибки.

Родители, в свою очередь, должны обратить внимание на ошибки, помочь ребёнку разобраться и исправить их. Не стоит нагружать мозг школьника большими объёмами заданий

Такими действиями вы отобьёте стремление ребёнка к знаниям. Во всём должно быть чувство меры.

Делайте перерыв. Ребёнок должен отвлекаться и отдыхать от занятий. Главное помнить, что не все обладают математическим складом ума. Может из вашего ребёнка вырастет знаменитый философ.

Разряды чисел.

Рассмотрим число 134. У каждой цифры этого числа есть свое место. Такие места, называются, разрядами.

Цифра 4 занимает место или разряд единиц. Так же цифру 4 можно назвать цифрой первого разряда.
Цифра 3 занимает место или разряд десятков. Или цифру 3 можно назвать цифрой второго разряда.
И цифра 1 занимает разряд сотен. По-другому, цифру 1 можно назвать цифрой третьего разряда. Цифра 1 является последней цифрой слава числа 134, поэтому цифру 1 можно назвать, цифрой высшего разряда. Цифра высшего разряда всегда больше 0.

Каждые 10 единиц любого разряда образуют новую единицу более высокого разряда.  10 единиц образуют один разряд десяток, 10 десятков образуют один разряд сотен, десять сотен образуют разряд тысяч и т.д.
Если нет какого-то разряда, то вместо него будет стоять 0.

Например: число 208.
Цифра 8 – первый разряд единиц.
Цифра 0 – второй разряд десятков. 0 означает в математике ничего. Из записи следует, что десятков у данного числа нет.
Цифра 2 –  третий разряд сотен.

Такой разбор числа называется разрядным составом числа.

Контрольная работа 4 класс, 4 четверть. Итоговая контрольная работа за курс начальной школы

Задачи по математике 4 класс



Контрольная работа 2.



Вариант 1

  • 1)
    65000 – 8679 = 56387 + 47918 = 5098 * 27 = 19712 : 64 =

    Выполни проверку в том случае, когда надо было найти произведение.

  • 2) 150131 – 25942 : 7 * 27 =
  • 3) 2 км 916 м + 4 км 84 м =

Решение:1)

65000 – 8679 = 56321 56387 + 47918 = 104305 5098 * 27 = 137646 19712 : 64 = 308

2) 150131 – 25942 : 7 * 27 = 150131 – 3706 * 27 = 150131 – 100062 = 50069
3) 2 км 916 м + 4 км 84 м = 7 км.

456 – x = 7 – 8

Решение:456 – x = 7 – 8
456 – x = 1
x = 456 – 1
x = 455

Длина участка прямоугольной формы 8 м, а ширина в 2 раза меньше. Найди площадь этого участка.

Решение:1) 8 : 2 = 4 (метра ширина участка)
2) 8 * 4 = 32 (м²)
Выражение: 8 : 2 * 8 = 32 м².
Ответ: площадь участка 32 м².



Представь число 60 000 в виде произведения двух множителей, каждый из которых делится на 100.

60000 = 600 * 100

Вариант 2

  • 1)
    6098 * 45 = 60079 – 7385 = 59346 + 18958 = 35958 : 78 =

    Выполни проверку в том случае, когда надо было найти частное.

  • 2) (20 100 – 18 534) : 6 * 25 =
  • 3) 3 т 70 кг – 2 т 180 кг =

Решение:1)

6098 * 45 = 274410 60079 – 7385 = 52694 59346 + 18958 = 78304 35958 : 78 = 461

2) (20 100 – 18 534) : 6 * 25 = 1566 : 6 * 25 = 261 * 25 = 6525
3) 3 т 70 кг – 2 т 180 кг = 890 кг

у : 12 = 42 + 58.

Решение:у : 12 = 42 + 58
у : 12 = 100
y = 12 * 100
y = 1200

Ширина парника прямоугольной формы 6 м, а длина на 2 м больше его ширины. Найди площадь этого парника.

Решение:1) 6 + 2 = 8 (длина прямоугольной формы)
2) 6 * 8 = 48 м² (площадь)
Выражение: (6 + 2) * 6 = 48 м²
Ответ: площадь прямоугльной формы 48 м²

Представь число 40 000 в виде произведения двух множителей, каждый из которых делится на 100.

40 000 = 400 * 100



Вариант 3

  • 1)
    73 008 – 6 375 = 4 078 * 32 = 48 267 + 21526 = 18 538 : 46 =

Выполни проверку в том случае, когда надо было найти разность.

2) 123715 – 19264 : 8 * 34 =
3) 4 т 823 кг + 3 т 177 кг =

Решение:1)

73008 – 6375 = 66633 4 078 * 32 = 130496 48 267 + 21526 = 469793 18 538 : 46 = 403

2) 123715 – 19264 : 8 * 34 = 123715 – 2408 * 34 = 123715 – 81872 = 41843
3) 4 т 823 кг + 3 т 177 кг = 8 т

х – 306 = 54 : 9

Решение:

  • х – 306 = 54 : 9
  • х – 306 = 6
  • x = 306 + 6
  • x = 312

Длина участка прямоугольной формы 9 м, а ширина в 3 раза меньше. Найди площадь этого участка.

Решение:1) 9 : 3 = 3 (метра ширина участка)
2) 3 * 9 = 27 м² (площадь)
Выражение: 9 : 3 * 9 = 27 м²;
Ответ: площадь участка 27 м².

Представь число 20 000 в виде произведения двух множителей, каждый из которых делится на 100.

20 000 = 200 * 100

Вариант 4

  • 1)
    5037 * 24 = 70093 – 8452 = 49463 + 23239 = 17992 : 52 =

Выполни проверку в том случае, когда надо было найти сумму.

2) (30 228 – 25 492) : 8 * 17 =
3) 5 км 80 м – 3 км 240 м

Решение:1)

5037 * 24 = 120888 70093 – 8452 = 61641 49463 + 23239 = 72702 17992 : 52 = 346

2) (30 228 – 25 492) : 8 * 17 = 4736 : 8 * 17 = 592 * 17 = 10064
3) 5 км 80 м – 3 км 240 м = 8 км 140 м.

96 : у = 100 – 94

Решение:96 : у = 100 – 94
96 : у = 6
y = 96 : 6
y = 16

Длина теплицы прямоугольной формы 8 м, а ширина на 2 м меньше ее длины. Найди площадь этой теплицы.

Решение:1) 8 – 2 = 6 м (ширина теплицы);
2) 6 * 8 = 48 м²;
Выражение: (8 – 2) * 8 = 48 м²;
Ответ: ширина теплицы 48 м².

Представь число 70 000 в виде произведения двух множителей, каждый из которых делится на 100

70 000 = 700 * 100

 

На странице использованы материалы из книги С. И. Волковой «Математика. Контрольные работы. 1-4 классы» 2008г.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector